D2D network operations

Tobias G.W. Verhulst

Royal Meteorological Institute of Belgium Solar-Terrestrial Centre of Excellence

Net-TIDE final meeting, Heraklion, 2017-10-04

Outline

- Introduction
- Issues of network geography
 - Varying distances
 - Directionality
- 3 Adapting to diurnal & seasonal changes
 - Diurnal variations
 - Seasonal variations
- 4 Future issues
- Summary

The Net-TIDE network

Question: what frequency to use for D2D soundings?

For every link in the TID detection network, a suitable D2D skymap sounding frequency must be found.

Question: what frequency to use for D2D soundings?

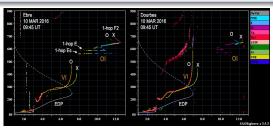
For every link in the TID detection network, a suitable D2D skymap sounding frequency must be found.

Ionogram soundings at both ends of a link are synchronised to produced VI+OI ionograms.

Question: what frequency to use for D2D soundings?

For every link in the TID detection network, a suitable D2D skymap sounding frequency must be found.

Ionogram soundings at both ends of a link are synchronised to produced VI+OI ionograms.



From the oblique traces a frequency for D2D skymap soundings is selected.

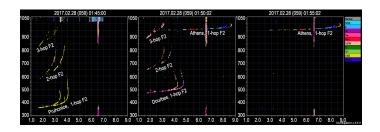
Question: what frequency to use for D2D soundings?

For every link in the TID detection network, a suitable D2D skymap sounding frequency must be found.

lonogram soundings at both ends of a link are synchronised to produced VI+OI ionograms.

From the oblique traces a frequency for D2D skymap soundings is selected. Care should be taken to identify the 1-hop F_2 oblique O-trace.

D2D soundings at different distances


Issue: optimal D2D frequency depends on distance.

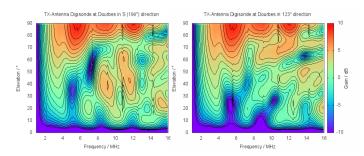
The ideal frequency for D2D skymap soundings is strongly dependent on the length of the sounding path.

D2D soundings at different distances

Issue: optimal D2D frequency depends on distance.

The ideal frequency for D2D skymap soundings is strongly dependent on the length of the sounding path.

Direction dependend antenna gain


Issue: direction dependend antenna gains.

The gains of the Tx antennas used in the network are not isotropic.

Direction dependend antenna gain

Issue: direction dependend antenna gains.

The gains of the Tx antennas used in the network are not isotropic.

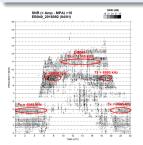
Day, night, and twilight frequencies

Due to the diurnal variations intrinsic to the ionosphere, no single frequency can be used throughout the day.

Day, night, and twilight frequencies

Due to the diurnal variations intrinsic to the ionosphere, no single frequency can be used throughout the day.

Issue: how many frequencies?


At least two frequencies are needed, more can be used to better cover twilight periods. But then the FAS algorithm is left without data for a while.

Day, night, and twilight frequencies

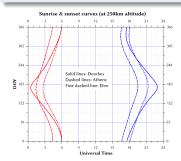
Due to the diurnal variations intrinsic to the ionosphere, no single frequency can be used throughout the day.

Issue: how many frequencies?

At least two frequencies are needed, more can be used to better cover twilight periods. But then the FAS algorithm is left without data for a while.

The FAS algorithm needs 160 minutes of soundings at a fixed frequency. Therefore, using a twilight frequency for one or two hours is not opportune.

Frequency switching time


Issue: when to switch between frequencies?

The best time to switch between day- and night-time D2D frequencies depends on the season.

Frequency switching time

Issue: when to switch between frequencies?

The best time to switch between day- and night-time D2D frequencies depends on the season.

Summary

The following operational issues have been identified and solved:

- Selection of a good D2D skymap sounding frequency, done by analysing VI+OI ionograms, independently for each link.
- Adapting this frequency to diurnal variations, done by using day- and night-time frequencies (but not more).
- Adapting to seasonal variations, done by (manually) updating the ionosonde schedules accounting for times of sunrise & sunset.

Summary

The following operational issues have been identified and solved:

- Selection of a good D2D skymap sounding frequency, done by analysing VI+OI ionograms, independently for each link.
- Adapting this frequency to diurnal variations, done by using day- and night-time frequencies (but not more).
- Adapting to seasonal variations, done by (manually) updating the ionosonde schedules accounting for times of sunrise & sunset.

The following issues might be improved in the future:

- Automation of the selection of the D2D skymap frequencies.
- Automatic adaptation to storm conditions (currently cause signal loss).
- Allow for multiple fixed frequency sounding at a Digisonde, either by shortening the D2D skymap program or by allowing simultaneous sounding at different frequencies.

Summary

The following operational issues have been identified and solved:

- Selection of a good D2D skymap sounding frequency, done by analysing VI+OI ionograms, independently for each link.
- Adapting this frequency to diurnal variations, done by using day- and night-time frequencies (but not more).
- Adapting to seasonal variations, done by (manually) updating the ionosonde schedules accounting for times of sunrise & sunset.

The following issues might be improved in the future:

- Automation of the selection of the D2D skymap frequencies.
- Automatic adaptation to storm conditions (currently cause signal loss).
- Allow for multiple fixed frequency sounding at a Digisonde, either by shortening the D2D skymap program or by allowing simultaneous sounding at different frequencies.

The end, thank you!